NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.

NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.

Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.

Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.

Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.

Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.

Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.

Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.

Our cloud-based platform is built for security and scalability across any size team or organization.

Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
NeuroTrackerX offers powerful cognitive training tools for both individuals and professionals. But when it comes to delivering consistent, measurable results at scale, our Business Software is in a league of its own.
Who It's for
Dashboard
Multi-User Management
NeuroTracker Training
Custom Sessions
Custom Questionnaires
Training Stats
Academy Certification
Support Resources
Advanced Options
Human 66 Brain Challenge
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
A single 6-min NeuroTracker baseline is highly correlated with simulated driving crash risk and lane deviation in healthy older people.
To test the theory that driving performance is strongly associated with dynamic processing of multiple objects, by evaluating if NeuroTracker measures correlate with older driving performance in simulated scenarios.
30 experienced drivers with ages ranging from 65-85 years old were tested on one session of NeuroTracker (3D-MOT), and completed up to 3 driving scenarios on the STISIM 3.0 driving simulator. 5 unexpected events were included in the scenarios to test crash risk. The correlations between NeuroTracker speed thresholds and simulator measures (crash rate, lane deviation) were then calculated.
Highly significant correlations were found between NeuroTracker thresholds and both crash rate and lane deviation in the highway driving scenarios. Lower NeuroTracker scores were strongly associated with lane deviation during highway merging, and higher NeuroTracker scores related to participants being less likely to crash across different scenarios, and to have better overall lane maintenance skills. This study adds plausibility to the idea that a multiple object tracking test such as NeuroTracker could be a candidate for inclusion in an assessment battery for older drivers.

NeuroTracker measures performed at different numbers of targets can be useful in characterizing attentional capacities in different populations.
This study sought to investigate the resource limits for dynamic visual attention across age development using NeuroTracker speed thresholds as a measure of attentional capacity.
21 participants were grouped by age: school-aged (6-12 years), adolescent (13-18 years), adult (19-30 years). Each group completed NeuroTracker baselines using speed threshold measurements at progressively increasing numbers of targets.
For all groups, speed thresholds changed in a logarithmic way consistent with the relative increase in multiple object tracking demands. Attentional capacities for NeuroTracker were determined by age, with significantly lower multiple object tracking limits for school-aged individuals. The findings also suggested that the 3D stereo component of NeuroTracker is a critical enabling factor for processing greater attentional loads: school-aged individuals could track numbers of targets beyond the limits of 2D non-stereo (as established in previous studies). These findings suggest that NeuroTracker can be used for characterizing the development of resource allocation in attentional processes through the use of a measure that best approximates real-world conditions.
NeuroTracker performance is linked fluid reasoning intelligence, particularly so in conditions of high load tracking.
The objective of the study was to examine MOT capability at different levels of cognitive load (tracking 1,2,3, or 4 objects) and its association to higher level processes, particularly fluid reasoning intelligence.
70 adult participants (mean= 23 years of age) completed NeuroTracker and were then assessed on the Weschler Abbreviated Scale of Intelligence 2 test. Participants were asked to track one, two, three and four targets out of a total of 8 spheres for eight seconds.
The results showed that as the number of targets increased, the average speed the participants successfully tracked all the objects decreased. This finding allowed the researchers to confirm that average speed score can be used as a suitable metric for MOT and in turn, attention resource capacity. As a result, the outcomes indicate that visual tracking capability is positively associated with fluid reasoning intelligence. Consequently, this finding demonstrates that there is a link between fluid reasoning intelligence and MOT capability, especially in conditions of high load (tracking 4 out of 8 targets).

NeuroTracker pre-training of professional rugby players dramatically reduces the impact physiological fatigue on cognitive functions compared to controls.
To assess the inhibitory effects of physiological fatigue on cognitive function in elite athletes, and to determine if perceptual-cognitive conditioning can reduce any such effects.
22 rugby players from the Top 14 French Professional Rugby League were divided into two groups. The trained group underwent 15 NeuroTracker Core training sessions, and the untrained group did only 3 Core sessions (sitting) to determine an initial baseline measure. All the athletes were then assessed on NeuroTracker while performing on an exercise bike at 80% of their maximum heartrate.
For the trained group, NeuroTracker speed thresholds remained within 0.03% of the range of their baseline (performed sitting). For the untrained group, NeuroTracker speed thresholds dropped by 30% from their predicted baseline. Firstly, the findings suggest that physical fatigue can significantly reduce high-level cognitive functions elicited by the NeuroTracker task, even with seasoned professionals. Secondly, the results also indicate that such effects can be mitigated with prior perceptual-cognitive conditioning, with as little as 90 minutes of distributed training.

To compare performance and muscle architecture changes in starters and nonstarters during a National Collegiate Athletic Association Division I women's soccer season.
28 females (av. 20 years old) were assessed on NeuroTracker baselines, vertical jump power, repeated line drills and reaction time at preseason, midseason, and postseason. Muscle architecture changes using ultrasonography were assessed at preseason and postseason.
Both starters and non-starters showed similar status or improvements on all assessments across the season, except for line drills performance, which showed greater improvements for starters. NeuroTracker and reaction time performance improved regardless of playtime. Results of muscle architecture analysis indicated that practice training alone provide sufficient stimulus for improving muscle quality during the competitive season. Overall starters did not display significant benefits from competition over athletes who performed training only.

A single NeuroTracker baseline strongly correlates with some metrics of competitive soccer performance in NCCA athletes.
To investigate the relationship between visual tracking speed (NeuroTracker) and soccer-specific performance measures.
19 NCAA Division I soccer players completed 1 NeuroTracker core session baseline and soccer performance metrics were obtained from WyScout.
Statistical analyses showed a nonsignificant correlation between NeuroTracker score and passing accuracy, and a strong correlation found between consistency score (a sub-component measure of NeuroTracker) and passing accuracy. Specifically for attacking players there was a stronger correlation with consistency and passing accuracy. For defenders, consistency and defensive win rate had a strong correlation.

To determine if variance in hydration status would be associated with cognitive performance, as assessed by NeuroTracker.
121 participants performed 15 NeuroTracker sessions across 10 days of visits to the laboratory. On the days of training, recent fluid intake, urine color (Urine color scale, UC), and body water (BIA) were documented.
Individuals with average urine color indicating good hydration performed significantly worse on NeuroTracker than those with a borderline dehydrated indicator, as based on urine color. Participants with no recent beverage consumption performed significantly better than those who had recently consumed water, tea, coffee , and milk. The researchers suggested that optimal hydration may not occur at the highest values of the urine color scale possibly due to moderate hyponatremia and hemodilution that could impact NeuroTracker performance.
https://peerj.com/articles/10211/
To examine whether individuals who play video games at a professional level in the esports industry differ from amateur video game players in their cognitive and learning abilities.
14 elite professional gamers and 16 casual video game players were assessed on a battery of standard neuropsychological tests evaluating processing speed, attention, memory, executive functions, and manual dexterity. In addition, both groups completed 15 distributed NeuroTracker sessions to assess dynamic visual attention and learning abilities.
Professional players showed the largest performance advantage relative to amateur players for visual spatial memory (Spatial Span), and with more modest benefits for selective and sustained attention (d2 Test of Attention), and auditory working memory (Digit Span). Professional players also had greatly higher initial speed thresholds on NeuroTracker, with the advantage increasing marginally over the 15 sessions. Overall, the cognitive assessments differentiated the professional and amateur groups, however there was negligible correlation with these results in terms of gaming experience in either group. In conclusion, standardized cognitive assessments revealed some elevated abilities of pro gamers, however NeuroTracker baselines and learning rates provided much more sensitive comparative measures.

A 20-30 minute NeuroTracker training intervention significantly improves multiple object tracking skills and working memory abilities.
To assess transfer from a NeuroTracker training intervention to near, mid-level, far transfer tasks.
84 graduate participants (av. 21 years old) were randomized to 3 trained groups and 1 passive control group. The trained groups completed either 5 or 3 standard sessions of NeuroTracker, or 5 sessions of a portable version of NeuroTracker (Microsoft Surface Pro tablet). The passive group completed only pre-post NeuroTracker baselines. All groups then completed pre-post assessments on a simplified 2D multiple object tracking task, an N-back working memory assessment, and on a video-based military driving task.
All trained groups showed significant improvements in NeuroTracker scores from 20-30 minutes of training. The passive control group also showed some modest improvements from only completing baselines. NeuroTracker training transferred to significant pre-post improvements in the 2D multiple object tracking test, but with smaller effects that improvements in NeuroTracker scores. Performance was found to be significantly better post-training for the trained groups on the working memory test, but not for the control group. No transfer effects were found for the video-based military task.

Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.

We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!