NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
NeuroTrackerX offers powerful cognitive training tools for both individuals and professionals. But when it comes to delivering consistent, measurable results at scale, our Business Software is in a league of its own.
Who It's for
Dashboard
Multi-User Management
NeuroTracker Training
Custom Sessions
Custom Questionnaires
Training Stats
Academy Certification
Support Resources
Advanced Options
Human 66 Brain Challenge
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
NeuroTracker pre-post baselines reveal the positive effects of a season of collegiate soccer play on perceptual-cognitive functions.
To examine physiological and cognitive differences between starters and non-starters in women’s soccer over the course of a season.
28 NCAA Division I female soccer players were tested at preseason and postseason on battery of assessments. This battery included a one session baseline NeuroTracker, vertical jump power, repeated line drills, reaction time, cognitive questionnaires, and finally, muscle architecture changes using ultrasonography.
Over the season, both groups had very similar NeuroTracker baselines, and both group’s speed thresholds improved significantly from pre-season to post-season. As there was no training intervention, the researchers concluded that this improvement effect revealed the positive influence of daily soccer practice on cognitive functions. This suggests NeuroTracker is a sensitive measure of the cumulative effects of sports training over time. These measures contrasted the cognitive questionnaire results, where the soccer player self-reported decreases in energy, focus and alertness, in line with increased fatigue, over the season.
A review of several NeuroTracker sports studies finds NeuroTracker to be a role model cognitive tool for improving soccer performance.
To review the existing perceptual-cognitive research and outline the relevance of NeuroTracker for the performance assessment and enhancement of competitive soccer abilities.
Several papers published on NeuroTracker were reviewed, including ‘Perceptual-Cognitive Training of Athletes’, ‘3D-Multiple Object Tracking task performance improves passing decision-making accuracy in soccer players’, ‘Visual tracking speed is related to Basketball-specific measures of performance in NBA players’, and ‘Enhancing Cognitive Function Using Perceptual-Cognitive Training’.
The combined existing research provides significant evidence for the usefulness of perceptualcognitive training to assess and enhance soccer abilities. Cognitive abilities are a significant feature of athletic excellence, and elite soccer players differ in their superior perceptual abilities in comparison to amateur players. NeuroTracker training has been found to improve high-level cognitive abilities known to be central factors in predicting soccer performance. Specifically, research has demonstrated that after just 3 hours of 3D multiple object tracking training, soccer players’ experienced a dramatic reduction in passing errors, from an error rate of 47%, down to just 28%.
To examine the effects of 14-days ATP supplementation (adenosine 5′-triphosphate) on NeuroTracker visual tracking speed, reaction time, mood and cognition in a double-blind crossover study.
22 adults were randomized to either an active PeakATP® group or a placebo control group and supplemented for 14-days. They then tested on 3 minutes of maximum intensity cycling. Pre, immediately post, and 60-minutes post, all participants completed a NeuroTracker baseline, a visuomotor reaction test (Dynavision D2), a Profile of Mood States Questionnaire and a cognition assessment (ANAM). After another 14 days of no supplementation, the active and control groups were then reversed and the whole procedure was repeated.
NeuroTracker results improved on the second testing procedure, however average differences between active and control groups were negligible. No significant interactions were found on the other assessments, apart from reaction time performance, which improved meaningfully with post ATP supplementation. The results suggest ATP may help decrease fatigue related effects from intense bouts of exercise, but not higher-level cognitive functions.
NeuroTracker integrated with closed-loop live EEG feedback enhances NeuroTracker learning rates for healthy adults.
To investigate if real-time Neurofeedback can enhance learning rates for NeuroTracker training.
40 healthy adults were assigned to four training groups (ten each), performing either:-
• Standard NeuroTracker training
• No training (control group)
• NeuroTracker with EEG-Neurofeedback
• NeuroTracker with sham Neurofeedback
EEG-Neurofeedback involved closed-loop feedback that automatically detects when a participant has lost track of their targets and immediately reindexes them.
The standard NeuroTracker group, control group and EEG-Neurofeedback groups started a similar level, higher than the sham Neurofeedback group. However the EEG-Neurofeedback showed superior learning rates over all other groups over the course of 10 training sessions. The results show that a closed-loop learning paradigm is highly effective at enhancing learning outcomes on the NeuroTracker task.
To compare performance and muscle architecture changes in starters and nonstarters during a National Collegiate Athletic Association Division I women's soccer season.
28 females (av. 20 years old) were assessed on NeuroTracker baselines, vertical jump power, repeated line drills and reaction time at preseason, midseason, and postseason. Muscle architecture changes using ultrasonography were assessed at preseason and postseason.
Both starters and non-starters showed similar status or improvements on all assessments across the season, except for line drills performance, which showed greater improvements for starters. NeuroTracker and reaction time performance improved regardless of playtime. Results of muscle architecture analysis indicated that practice training alone provide sufficient stimulus for improving muscle quality during the competitive season. Overall starters did not display significant benefits from competition over athletes who performed training only.
Pitching velocity of youth baseball players at different ages correlates with NeuroTracker scores and other performance metrics.
To identify across ages, in younger males and females, and to compare, in younger males, the anthropometrics, athletic abilities and perceptual-cognitive skills associated with baseball pitcher's ball velocity.
Male and female athletes completed a sociodemographic questionnaire followed by anthropometric, athletic ability, perceptual-cognitive skill and pitching velocity assessments. Athletes were categorized by their age categories (11U, 13U, 15U, 18U, 21U). To evaluate the athletes' anthropometrics, height and weight, BMI, waist circumference, arms segmental length and girth were measured. Athletic abilities were assessed using athletes' grip strength, upper body power, vertical jump height, sprint, change of direction, and dynamic balance. Perceptual-cognitive skills performance was assessed with NeuroTracker, and pitching performance assessment was completed using the athletes' average fastball velocity.
In male athletes across each age category all anthropometric, athletic ability and perceptual-cognitive skill factors were associated with pitching velocity with associations, with effects being stronger the older the age category. NeuroTracker baselines has some of the strongest associations to pitching velocity and athletic abilities across age categories.
7 days of NeuroTracker training significantly enhances spatial abilities and semantics skills in young students.
To assess if the mechanism of perceptual-cognitive training can transfer to spatial and semantic abilities in students.
60 male lower secondary school students were randomly assigned a NeuroTracker training group (21 sessions over 7 days) or a passive control group (no training). Pre- and post-training assessment were carried out with the Test of Spatial Ability and the Test Of Semantic Skills–Intermediate.
The control group showed negligible change between pre and post tests, whereas the NeuroTracker group showed significant transfer with around a 50% gain in spatial ability and a 55% gain in semantic skills. The researchers concluded that a NeuroTracker intervention can increase cognitive abilities in secondary school students.
NeuroTracker performance is linked fluid reasoning intelligence, particularly so in conditions of high load tracking.
The objective of the study was to examine MOT capability at different levels of cognitive load (tracking 1,2,3, or 4 objects) and its association to higher level processes, particularly fluid reasoning intelligence.
70 adult participants (mean= 23 years of age) completed NeuroTracker and were then assessed on the Weschler Abbreviated Scale of Intelligence 2 test. Participants were asked to track one, two, three and four targets out of a total of 8 spheres for eight seconds.
The results showed that as the number of targets increased, the average speed the participants successfully tracked all the objects decreased. This finding allowed the researchers to confirm that average speed score can be used as a suitable metric for MOT and in turn, attention resource capacity. As a result, the outcomes indicate that visual tracking capability is positively associated with fluid reasoning intelligence. Consequently, this finding demonstrates that there is a link between fluid reasoning intelligence and MOT capability, especially in conditions of high load (tracking 4 out of 8 targets).
NeuroTracker baselines pre-post intense exercise indicate greater cognitive benefits of a prescription hydration plan for collegiate athletes.
To to determine whether a hydration plan based off of an athlete’s sweat rate and sodium loss, improves anaerobic and neurocognitive performance during a moderate to hard training session, as well as heart rate recovery from the session.
15 NCAA collegiate athletes from Merrimack College from multiple sports first underwent a qualitative assessment for hydration habits and knowledge, then were assessed for sweat loss, and randomly assigned to either a prescription hydration plan (PHP) or asked to continue with their normal hydration habits (NHP). All participants completed underwent performance assessments prior, during, and immediately after a moderate to hard sports-specific training session. Assessments included NeuroTracker baselines, standing long jump, heart rate and Vo2 Max monitoring, as well as sodium and sweat loss monitoring.
NeuroTracker baselines provided a clear indication that a prescription hydration plan has a significantly better influence on perceptual-cognitive functions, both pre and post physical training, compared to a normal hydration plan. Overall, the researchers conclude that this is the first investigation to show that an individually tailored hydration plan improves athletic performance for collegiate athletes engaged in a variety of sports.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!