NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.

NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.

Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.

Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.

Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.

Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.

Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.

Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.

Our cloud-based platform is built for security and scalability across any size team or organization.

Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
NeuroTrackerX offers powerful cognitive training tools for both individuals and professionals. But when it comes to delivering consistent, measurable results at scale, our Business Software is in a league of its own.
Who It's for
Dashboard
Multi-User Management
NeuroTracker Training
Custom Sessions
Custom Questionnaires
Training Stats
Academy Certification
Support Resources
Advanced Options
Human 66 Brain Challenge
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
NeuroTracker provides greater improvements in archery athlete's concentration than conventional archery training.
To investigate if NeuroTracker training can improve archery concentration performance at moment of shooting.
20 archers in an archery club were divided into two control groups. Over 12 visits the one group completed NeuroTracker training, while the other group completed conventional archery training. Pre-post assessments of concentration were completed by both groups using the Concentration Grid Test.
There was a significant transfer effect from both the NeuroTracker training and the conventional training on the improvement of the archery athlete’s concentration, however NeuroTracker training demonstrated stronger post-training improvements on the Concentration Grid Test across mean, standard deviation and gain scores. The researchers conclude NeuroTracker could be an effective training method to improve the concentration of archery athletes.

NeuroTracker training with elite youth soccer players leads to improvements in inhibition and visual clarity over controls, but not other measures.
To evaluate the effectiveness and transfer of an NeuroTracker training on visual and executive functions in youth elite soccer players.
29 elite youth soccer players were recruited and divided into training and control groups. Visual and executive functions were analyzed in a pre–post test design with both groups doing regular soccer training, and the trained group also completing 10 weeks of NeuroTracker training twice a week. Transfer assessments included tests with the Senaptec Sensory Station, the Trail Making Test, and the Design Fluency test.
Large differences in NeuroTracker initial baselines were found both between the groups, and within the groups. For the trained group, initial baselines were strongly correlated with improvement rates. Assessments show gains for both groups in working memory, cognitive flexibility, inhibition, metacognition, MOT, attention window and processing speed, but only measures inhibition, visual clarity showed advantages specific to the trained group. The researchers recommended studies with a dual-task training intervention and larger number of participants may be needed to reveal training effects for this population.

NeuroTracker baseline reveal stroboscopic vision training does not improve perceptual-cognitive skills, but may aid anticipation skills.
To analyze the repeated effect of stroboscopic vision training on perceptual-cognitive and anticipation skills in soccer players.
28 male soccer players randomized into two groups: Stroboscopic vision training and control groups. The trained group completed 8-weeks of stroboscopic training. Pre post assessments were completed for both groups, which included NeuroTracker baselines and assessments decision-making and anticipation skills.
Both groups improved by similar amounts in NeuroTracker baselines and decision-making. However the trained group showed a larger improvement in anticipation skill than the control group. The findings suggest that stroboscopic vision training does not improve perceptual-cognitive functions or decision-making, but may aid anticipation skills in soccer athletes.

Pitching velocity of youth baseball players at different ages correlates with NeuroTracker scores and other performance metrics.
To identify across ages, in younger males and females, and to compare, in younger males, the anthropometrics, athletic abilities and perceptual-cognitive skills associated with baseball pitcher's ball velocity.
Male and female athletes completed a sociodemographic questionnaire followed by anthropometric, athletic ability, perceptual-cognitive skill and pitching velocity assessments. Athletes were categorized by their age categories (11U, 13U, 15U, 18U, 21U). To evaluate the athletes' anthropometrics, height and weight, BMI, waist circumference, arms segmental length and girth were measured. Athletic abilities were assessed using athletes' grip strength, upper body power, vertical jump height, sprint, change of direction, and dynamic balance. Perceptual-cognitive skills performance was assessed with NeuroTracker, and pitching performance assessment was completed using the athletes' average fastball velocity.
In male athletes across each age category all anthropometric, athletic ability and perceptual-cognitive skill factors were associated with pitching velocity with associations, with effects being stronger the older the age category. NeuroTracker baselines has some of the strongest associations to pitching velocity and athletic abilities across age categories.

High intensity interval training combined with NeuroTracker provides an efficient dual-task method for training physical and mental performance.
To investigate how perceptual–cognitive performance is affected during high-intensity interval training (HIIT) using NeuroTracker(NT) assessments.
42 healthy adults were randomly assigned to an intervention (HIIT + NT, NT, HIIT) or control group. NT performance was measured pre-and post-test at 5, 15, and 25 min while running on a treadmill. The participants trained twice a week for a 4-week intervention period.
There was a significant interaction effect between pre/post-test and groups regarding perceptual-cognitive performance, indicating similar enhancements in the HIIT + NT and the NT group during exercise. HIIT influences physical fitness but did not show any impact on perceptual–cognitive performance. Overall training resulted in substantial task-specific gains. The researchers suggest combination training may be proposed as a training program to improve perceptual–cognitive, and physical performance in a time-efficient way.

NeuroTracker and reaction time measures reveal the effectiveness of different hydration modalities under severe physical fatigue.
To examine the effects of different rehydration strategies on cognitive performance under the effects of physical fatigue.
12 male endurance-trained runners (av. age: 23. years) were tasked with running on a treadmill at 70% of their predetermined VO2max for 1 h followed by running at 90% of VO2max until exhaustion on four separate days. On each day different hydration modalities were given (no hydration, electrolyte drink, electrolyte drink with a low dose of Sustamine, electrolyte drink with a high dose of Sustamine), drinking 250 mL every 15 min. Before and after each hour run, cognitive function (NeuroTracker) and reaction tests were administered.
Results showed that physical reaction time was faster for the low dose trial than the high dose trial. Analysis of lower body quickness indicates that performance in both the low and high dose trials were likely improved in comparison to the no hydration trial. NeuroTracker results indicated a possible greater performance for dehydration and low dose compared to only the electrolyte drink, while there was a likely greater performance in multiple object tracking for the high dose trial compared to consumption of the electrolyte drink only.

Rigorous feasibility study finding NeuroTracker to have high accessibility and adherence for at-home independent cognitive training.
To investigate the feasibility of using a remote therapeutic cognitive intervention for brain injury survivors using an at-home training program.
20 older female and male adults were assessed for cognitive health status using a self-report questionnaire and the Mini-Mental State Examination (MMSE) and deemed cognitively healthy. The at-home participants were provided with NeuroTracker training and completed 20 training sessions over 5 weeks. Participant recruitment, retention, adherence, and experience were used as markers of feasibility. Individual session scores, overall improvement, and learning rates between groups was also assessed.
The remote intervention was found to have strong feasibility overall. This was supported by high recruitment and retention, 90% participant adherence, along with ease of use of the program. Differences in screen size and 3D technology showed no differences on cognitive benefits achieved from training, with significant improvements in task performance across the program, which was also equivalent to lab-based training. The researchers concluded that NeuroTracker provides a promising at-home option for cognitive training for cognitively healthy adults and brain injury survivors.

Several studies have shown that aerobic exercise can slow age-related cognitive decline, and in some cases, improve cognitive function in the older population. The purpose of this study was to investigate for the first time, the effects of resistance training on cognitive function, as measured by changes in NeuroTracker measures.
25 older adults with a mean age of 70yrs were split into a trained group (6 weeks of resistance exercises), and an untrained group. Perceptual-cognitive ability was measured pre and post training using NeuroTracker baselines.
The older adults who performed six weeks of resistance training experienced significant improvements in perceptual-cognitive function as measured by NeuroTracker. Resistance training may therefore be an effective means to slow age related cognitive decline.
.jpeg)
For the first time NeuroTracker learning rates reveal the remarkably adaptability of world-class athletes' brains.
To assess the learning capacities of elite athlete populations compared to amateur athletes and nonathlete university students on a neutral cognitive training assessment (NeuroTracker).
308 participants were assessed by completing 15 distributed NeuroTracker sessions, grouped as the following: 102 professional elite athletes (NHL, EPL and Top 14 Rugby), 173 NCAA elite non-professional athletes, and 33 non-athlete university students.
The results showed a clear distinction between level of athletic performance and corresponding fundamental mental capacities for learning a demanding abstract and dynamic scene task. Elite athletes showed significantly higher initial baselines than the other groups, along with substantially superior learning rates. The elite non-professional athletes also similarly significantly higher learning rates over the non-athletes group. For the first time this evidence suggest that a defining characteristic of elite professional athletes is their perceptual-cognitive learning prowess, associated with unusually high levels of neuroplasticity, and that NeuroTracker is a sensitive tool for objectively assessing these abilities.

Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.

We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!