Watch this video to understand why NeuroTracker is used by many people in all different industries.
From ADHD to special forces and athletes to elderly. NeuroTracker is being used to improve humans everywhere
NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
Gain in Concentration Ability and Sustained Attention
Increase in Perception Speed
Reduction in the Effects of Cognitive Fatigue
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
NeuroTracker baselines pre-post intense exercise indicate greater cognitive benefits of a prescription hydration plan for collegiate athletes.
To to determine whether a hydration plan based off of an athlete’s sweat rate and sodium loss, improves anaerobic and neurocognitive performance during a moderate to hard training session, as well as heart rate recovery from the session.
15 NCAA collegiate athletes from Merrimack College from multiple sports first underwent a qualitative assessment for hydration habits and knowledge, then were assessed for sweat loss, and randomly assigned to either a prescription hydration plan (PHP) or asked to continue with their normal hydration habits (NHP). All participants completed underwent performance assessments prior, during, and immediately after a moderate to hard sports-specific training session. Assessments included NeuroTracker baselines, standing long jump, heart rate and Vo2 Max monitoring, as well as sodium and sweat loss monitoring.
NeuroTracker baselines provided a clear indication that a prescription hydration plan has a significantly better influence on perceptual-cognitive functions, both pre and post physical training, compared to a normal hydration plan. Overall, the researchers conclude that this is the first investigation to show that an individually tailored hydration plan improves athletic performance for collegiate athletes engaged in a variety of sports.
For the first time NeuroTracker learning rates reveal the remarkably adaptability of world-class athletes' brains.
To assess the learning capacities of elite athlete populations compared to amateur athletes and nonathlete university students on a neutral cognitive training assessment (NeuroTracker).
308 participants were assessed by completing 15 distributed NeuroTracker sessions, grouped as the following: 102 professional elite athletes (NHL, EPL and Top 14 Rugby), 173 NCAA elite non-professional athletes, and 33 non-athlete university students.
The results showed a clear distinction between level of athletic performance and corresponding fundamental mental capacities for learning a demanding abstract and dynamic scene task. Elite athletes showed significantly higher initial baselines than the other groups, along with substantially superior learning rates. The elite non-professional athletes also similarly significantly higher learning rates over the non-athletes group. For the first time this evidence suggest that a defining characteristic of elite professional athletes is their perceptual-cognitive learning prowess, associated with unusually high levels of neuroplasticity, and that NeuroTracker is a sensitive tool for objectively assessing these abilities.
Pitching velocity of youth baseball players at different ages correlates with NeuroTracker scores and other performance metrics.
To identify across ages, in younger males and females, and to compare, in younger males, the anthropometrics, athletic abilities and perceptual-cognitive skills associated with baseball pitcher's ball velocity.
Male and female athletes completed a sociodemographic questionnaire followed by anthropometric, athletic ability, perceptual-cognitive skill and pitching velocity assessments. Athletes were categorized by their age categories (11U, 13U, 15U, 18U, 21U). To evaluate the athletes' anthropometrics, height and weight, BMI, waist circumference, arms segmental length and girth were measured. Athletic abilities were assessed using athletes' grip strength, upper body power, vertical jump height, sprint, change of direction, and dynamic balance. Perceptual-cognitive skills performance was assessed with NeuroTracker, and pitching performance assessment was completed using the athletes' average fastball velocity.
In male athletes across each age category all anthropometric, athletic ability and perceptual-cognitive skill factors were associated with pitching velocity with associations, with effects being stronger the older the age category. NeuroTracker baselines has some of the strongest associations to pitching velocity and athletic abilities across age categories.
Older adults show clear improvements in cognitive abilities at the end of a NeuroTracker training intervention, and additional gains one month later.
To investigate if perceptual-cognitive training can provide a proactive intervention to enhance cognition in older adults with memory problems.
47 healthy participants aged 60-90 with subjective memory problems were divided into active and control groups. All participants completed three robust neuropsychological assessments over a three- month period. Active participants completed these before, after and following a 7 week NeuroTracker training intervention.
The NeuroTracker trained group improved significantly on the task, with significant or major transfer to scores in memory tasks (e.g., CVLT-II: Immediate Free Recall; Short-Term Memory Recall, and Long- Term Memory Recall), working memory tasks (e.g., Digit Span Backward) and cognitive flexibility tasks (e.g., D-KEFS Verbal Fluency Category Switching and D-KEFS Verbal Fluency Letter Fluency). NeuroTracker scores also correlated to the scale of these improvements for processing speed, memory performance, and cognitive flexibility. Furthermore, some increased transfer benefits were found one month after the training intervention, potentially indicating heightened neurogenesis and promise for neuroplastic cognitive rehabilitation. The overall results suggest that this form of perceptual-cognitive training can significantly enhance cognition in a sustained way, with a relatively short training intervention.
30 sessions of NeuroTracker training promotes safer driving skills on advanced driving simulators in both younger and older adults.
To investigate if NeuroTracker training can transfer to improved driving skills as measured by state-of-the-art driving simulators.
20 young adults and 14 older adults were divided into active and active-control groups. The active group completed 30 sessions of NeuroTracker training. Before and after training all participants were assessed using a high-fidelity driving simulator, which measured numerous aspects of driving performance.
The results of the study revealed that both young and older adults showed significant improvements in simulated driving performance following the NeuroTracker training. Specifically this included better lane keeping abilities, quicker reaction times to hazards, and enhanced overall situational awareness. The older adult group exhibited larger overall gains in driving performance. The researchers concluded that this study provides preliminary evidence that NeuroTracker training may improve driving safety, particularly through quicker detection of or reaction to dangerous events.
NeuroTracker training across a professional baseball season transfers to large improvements in hitting performance for curveballs and sliders.
To assess the performance transfer effects from NeuroTracker training to professional baseball hitting over a competition season.
12 Japanese pro baseball players from the Seibu Lions performed NeuroTracker training at their own preferred timing and frequency over 5 months, completing up to 80 sessions each. Throughout this duration and 4 months prior, competition hitting metrics were recorded: zone contact, zone-swing strike, outside swing, outside-swing strike.
On average the baseball players’ NeuroTracker speed threshold scores improved by around 30%, with no ceiling effects from continued training. Metrics on fastball hitting showed no significant changes. However, metrics on non-fastball hitting (e.g. curve balls and sliders) revealed strong positive effects. Successful hit rate increased by +12%, while zone swing and outside swing strikes were reduced substantially by -25.3% and -26.5% respectively. Outside swings were also positively reduced by -9.6%.
Prior consolidation with NeuroTracker isolated training improves learning rates for NeuroTracker decision-making and motor-skill dual-task training.
To investigate the effects of motor and perceptual dual-task NeuroTracker training over time, and in particular to see if performing prior NeuroTracker consolidation training significantly influences these effects.
71 participants were assigned either just NeuroTracker training (iMOT), NeuroTracker with a decisionmaking task (Combi), NeuroTracker consolidation training then with a decision-making task (Consol), or an isolated decision-making task (iDM). The decision-making task involved a motor-response reaction to a simulated birdie with a real badminton racket. Performance was measured through NeuroTracker speed threshold, decision accuracy, and reaction time.
Firstly the results demonstrated that the dual-task component significantly affects NeuroTracker speed thresholds. Secondly that this effect is reduced with training over time. Thirdly that this effect is reduced further when consolidation training on just NeuroTracker is completed beforehand. Additionally, decision-making speed, reaction time and accuracy improved with dual-task training. Overall this study provides evidence that NeuroTracker consolidation training is an effective method for accelerating learning rates across multiple performance domains.
NeuroTracker training improves memory and other cognitive abilities for elderlies, more effectively than a memory training intervention.
To investigate if cognitive training programs can reduce expected cognitive decline associated with aging.
44 participants of 60 years or older were equally divided into an experimental (with NeuroTracker) and a comparative group (without NeuroTracker) and completed 12 training sessions per week. Both groups practiced mnemonic memory training techniques. Pre and post assessments were also conducted, including a a sociodemographic questionnaire, neuropsychological assessment and NeuroTracker pre and post baseline measures.
Both groups experienced some benefits from the memory training, however only the NeuroTracker trained group achieved transfer benefits for attention, reaction time, visual processing speed, episodic, semantic, subjective and working memory as well as aspects of social cognition. The researchers concluded that NeuroTracker with memory training contributed to significantly improved cognitive performance over memory training alone, and that more research should be conducted for elderly populations with and without cognitive deficits.
A 6-minute NeuroTracker cognitive assessment effectively predicts daily trader performance according to objective trading metrics.
To examine if cognitive assessments using NeuroTracker could be predictive of daily trader performance metrics.
29 professional male traders aged between 35 and 65 years old were recruited NeuroStreet Trading Academy over a 9-month period. Using the remote NeuroTrackerX software and anaglyph 3D glasses the traders completed 6-minute assessments each work day, following standardized research protocols. Data from the Ninjatrader Trading Platform was used to record 7 key performance metrics across each day of trading.
NeuroTracker data revealed a high learning response across a total of 624 days of trading. Data analyses showed a strong correlational relationship between daily NeuroTracker baselines and 5 of the trading performance metrics, with Total Net Profit being the most significant. The researchers concluded that a 6-minute NeuroTracker assessment was effective at predicting real-world trading performance on any given day.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.