NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
NeuroTrackerX offers powerful cognitive training tools for both individuals and professionals. But when it comes to delivering consistent, measurable results at scale, our Business Software is in a league of its own.
Who It's for
Dashboard
Multi-User Management
NeuroTracker Training
Custom Sessions
Custom Questionnaires
Training Stats
Academy Certification
Support Resources
Advanced Options
Human 66 Brain Challenge
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
A single 6-min NeuroTracker assessment correlates with key NBA competition performance metrics across a season of play.
The purpose of this study was to determine the relationship between visual tracking speed (NeuroTracker) and reaction time on basketball specific measures of performance.
12 professional NBA basketball players (Orlando Magic) were tested with a 1-session NeuroTracker baseline (6-mins), reaction time assessment, and the were results compared to competitive performance metric across an NBA season. Competition data analysis focused on Assists, Turnovers, Assist-to-turnover ratio, and Steals.
Finding show that relationships between NeuroTracker baselines were most strongly correlatedwith Assist-to-turnover ratio, and Turnovers. Backcourt players were more likely to outperform frontcourt players in AST and accordingly very likely to achieve higher NeuroTracker performance. Reaction time was not related to any of the basketball-specific performance measures. Overall a single NeuroTracker session baselines showed significant correlation to the NBA players’ ability to see and respond to various stimuli on the basketball court in ways that resulted in better performance.
NeuroTracker performance is linked fluid reasoning intelligence, particularly so in conditions of high load tracking.
The objective of the study was to examine MOT capability at different levels of cognitive load (tracking 1,2,3, or 4 objects) and its association to higher level processes, particularly fluid reasoning intelligence.
70 adult participants (mean= 23 years of age) completed NeuroTracker and were then assessed on the Weschler Abbreviated Scale of Intelligence 2 test. Participants were asked to track one, two, three and four targets out of a total of 8 spheres for eight seconds.
The results showed that as the number of targets increased, the average speed the participants successfully tracked all the objects decreased. This finding allowed the researchers to confirm that average speed score can be used as a suitable metric for MOT and in turn, attention resource capacity. As a result, the outcomes indicate that visual tracking capability is positively associated with fluid reasoning intelligence. Consequently, this finding demonstrates that there is a link between fluid reasoning intelligence and MOT capability, especially in conditions of high load (tracking 4 out of 8 targets).
Rigorous feasibility study finding NeuroTracker to have high accessibility and adherence for at-home independent cognitive training.
To investigate the feasibility of using a remote therapeutic cognitive intervention for brain injury survivors using an at-home training program.
20 older female and male adults were assessed for cognitive health status using a self-report questionnaire and the Mini-Mental State Examination (MMSE) and deemed cognitively healthy. The at-home participants were provided with NeuroTracker training and completed 20 training sessions over 5 weeks. Participant recruitment, retention, adherence, and experience were used as markers of feasibility. Individual session scores, overall improvement, and learning rates between groups was also assessed.
The remote intervention was found to have strong feasibility overall. This was supported by high recruitment and retention, 90% participant adherence, along with ease of use of the program. Differences in screen size and 3D technology showed no differences on cognitive benefits achieved from training, with significant improvements in task performance across the program, which was also equivalent to lab-based training. The researchers concluded that NeuroTracker provides a promising at-home option for cognitive training for cognitively healthy adults and brain injury survivors.
Attention and feedback are known to play critical roles in learning. This preliminary study sought to assess the benefits of instant feedback within NeuroTracker task performance.
38 young adults (mean 23yrs old) completed 4 NeuroTracker sessions over two days. 19 participants were assisted with feedback on test performance throughout the sessions, and 19 were given no feedback. Pre and post training assessments were completed using the Continuous Performance Test II to measure cognitive function.
The participants assisted with feedback demonstrated greater improvement in NeuroTracker scores over the 4 sessions. The feedback group also demonstrated better transferability effects to the CPT-II task, reflected by a significantly decreased pre/post mean error rate. The results indicate that feedback has a positive effect on performance and may be an important aspect of transfer to cognitive functions.
NeuroTracker training reveals some moderate benefits for the decision-making abilities of law enforcement officers engaged in active duty.
To investigate if NeuroTracker training can improve perceptual-cognitive skills related to decision-making skills for law enforcement officers.
40 elite law enforcement officers completed a pre-post test experiment on a video based simulated task environment to establish baseline scores for situational awareness, anticipation and decision-making skills. Participants were randomly assigned to training, control and passive groups. The training group completed NeuroTracker sessions around duty schedules over a period of three-weeks. Pre- and post-testing was scored by five police procedures subject-matter-experts.
The simulated task results showed an average decline in scores, the control participants remained unchanged, while the NeuroTracker group showed moderate increases. Improvements in NeuroTracker scores were observed overall, but varied atypically. Although some far transfer effects to law enforcement decision-making abilities were seen, fatigue and stress-related effects of active duty may have influenced results.
NeuroTracker training yields superior learning rates when combined with crowd noise stimulation in collegiate football players.
To investigate how attentionally based performance and learning is affected when audio stimuli is present in athletic populations.
Twenty USPORT level football athletes (mean age = 20.5yrs) completed in 18 sessions of NeuroTracker Training. Ten athletes completed the training in a dark room with no external noise (had noise cancelling headphones). The other ten athletes completed the training in the same room but were exposed to a consistent simulated crowd noise.
No significant differences in NeuroTracker initial baselines were found between the two groups were found. However, after the 18 training sessions, the mean NeuroTracker score for the noise group was 2.07 (SD = 0.24). In contrast the no noise group averaged significantly slower at 1.77 (SD = 0.32). Although studies show that noise can inhibit attentional processing, this study indicates that presence of the simulated crowd noise may enhance the ecological validity of NeuroTracker training for athlete populations.
NeuroTracker baselines effectively predict driving safety for both younger and older adults, and experienced and inexperienced drivers.
To investigate NeuroTracker baselines could be predictive of driving performance across 3 simulated scenarios, to see if these measures could be predictive of driving risks.
115 drivers were divided into three age and experience groups: young inexperienced (18-21 years old), adult experienced (25-55 years old) and older adult (70-86 years old). Participants were tested for 2 hours across three different driving scenarios varying in mental workload (low, medium, high), using a highly sophisticated driving simulator. A total of 18 different metrics on driving behavior were evaluated and compared to NeuroTracker baseline scores.
Statistical analysis of NeuroTracker results and driving performance metric yielded significant correlations, including being predictive of driving speed, breaking speed, and reaction to dangerous events. Low NeuroTracker scores effectively predicted elevated risks of crashes. Lower NeuroTracker scores also correlated significantly with slower average driving speed for older adults, providing evidence towards the theory that driving more slowly is related to the cognitive effects of aging.
Pitching velocity of youth baseball players at different ages correlates with NeuroTracker scores and other performance metrics.
To identify across ages, in younger males and females, and to compare, in younger males, the anthropometrics, athletic abilities and perceptual-cognitive skills associated with baseball pitcher's ball velocity.
Male and female athletes completed a sociodemographic questionnaire followed by anthropometric, athletic ability, perceptual-cognitive skill and pitching velocity assessments. Athletes were categorized by their age categories (11U, 13U, 15U, 18U, 21U). To evaluate the athletes' anthropometrics, height and weight, BMI, waist circumference, arms segmental length and girth were measured. Athletic abilities were assessed using athletes' grip strength, upper body power, vertical jump height, sprint, change of direction, and dynamic balance. Perceptual-cognitive skills performance was assessed with NeuroTracker, and pitching performance assessment was completed using the athletes' average fastball velocity.
In male athletes across each age category all anthropometric, athletic ability and perceptual-cognitive skill factors were associated with pitching velocity with associations, with effects being stronger the older the age category. NeuroTracker baselines has some of the strongest associations to pitching velocity and athletic abilities across age categories.
Perceptual cognitive training improves biological motion perception evidence for transferability of training in healthy aging
To investigate if the decline in biological motion perception associated with healthy aging can be reversed with a short NeuroTracker training intervention.
13 participants completed 3-hours of NeuroTracker training over 5-weeks, and 28 control participants did either experimental training or no training (overall mean age of 67 years old). Pre-post assessments of biological motion perception was assessed with a VR walker (point like display) at 4m and 16m.
Pre-NeuroTracker training participants displayed significantly lower performance for interpreting human movement at 4m, compared to 16m. Controls showed no change post-training, whereas the NeuroTracker trained group's performance at 4m rose to the level of their performance at 16m. As biological motion perception abilities are deemed to be important for social skills, as well as critical for collision avoidance at 4m, the researchers concluded that the results demonstrate NeuroTracker to be a useful form of generic training for helping older people deal with socially relevant dynamic scenes.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!