NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
NeuroTrackerX offers powerful cognitive training tools for both individuals and professionals. But when it comes to delivering consistent, measurable results at scale, our Business Software is in a league of its own.
Who It's for
Dashboard
Multi-User Management
NeuroTracker Training
Custom Sessions
Custom Questionnaires
Training Stats
Academy Certification
Support Resources
Advanced Options
Human 66 Brain Challenge
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
NeuroTracker training yields superior learning rates when combined with crowd noise stimulation in collegiate football players.
To investigate how attentionally based performance and learning is affected when audio stimuli is present in athletic populations.
Twenty USPORT level football athletes (mean age = 20.5yrs) completed in 18 sessions of NeuroTracker Training. Ten athletes completed the training in a dark room with no external noise (had noise cancelling headphones). The other ten athletes completed the training in the same room but were exposed to a consistent simulated crowd noise.
No significant differences in NeuroTracker initial baselines were found between the two groups were found. However, after the 18 training sessions, the mean NeuroTracker score for the noise group was 2.07 (SD = 0.24). In contrast the no noise group averaged significantly slower at 1.77 (SD = 0.32). Although studies show that noise can inhibit attentional processing, this study indicates that presence of the simulated crowd noise may enhance the ecological validity of NeuroTracker training for athlete populations.
A short NeuroTracker training intervention significantly improves off-the-block dive reaction times for elite collegiate swimmers.
To to determine if NeuroTracker training could affect off-the-block reaction times, by improving selection attention in university athlete swimmers.
15 male and female varsity swimmers were divided into active and control groups. The active group completed a training intervention of 10 NeuroTracker sessions, controls did no training. Pre and post training the participants were assessed 3 times on for off-the-block reaction times using the Ares Omega Timing System.
The control group showed a moderate improvement in reaction time, however the NeuroTracker trained group showed large improvement in reaction time (-11%). This pilot study indicates that selective attention may be a critical factor in reaction time performance, and that a short intervention of NeuroTracker training can significantly improve reaction times.
NeuroTracker baselines and learning rates correlate with the dietary intake and sleep quality of esports athletes, revealing effects on cognition.
To investigate the influence of dietary intake and sleep of esports athletes on cognitive performance and learning capacities measured by NeuroTracker.
119 esports athletes completed a rigorous battery of assessments over an 8-10 day period. This included a comprehensive range of 8 self-assessment surveys, a record of diet, fluid intake and urine color, continuous biometric monitoring of heartrate and sleep quality, and 20 sessions of NeuroTracker distributed over the period.
Average sleep quality was found to be in the range of moderate to severe sleep disturbance and most participants did not meet USDA guidelines for numerous key nutrients, as well as exceeding recommendations for cholesterol, sodium, and saturated fat. NeuroTracker baselines improved on average by around 50% by the end of the 20 sessions (similar to elite athletes). Higher NeuroTracker performance was strongly correlated with better sleep and dietary habits, and specifically, consuming the recommended intake of protein was closely tied to increased learning rates.
Scientific analysis of NeuroTracker driving research deems it to be relevant measure of driving safety in the context of renewing a license.
To combine several tests known to assess driving fitness and propose a methodology to bring these together under a single index termed the ‘Driver’s Safety Index’.
115 licensed drivers between the ages of 18 and 86 were separated into two groups: 64 young participants (average age of 29 years), and 51 older participants (average age of 77 years). Each participant was assessed on three different experimental phases. 1. Visual tests: visual acuity test (V1), stereoscopic vision test (V2), and a binocular visual field test (V3). 2. Simulator driving tests across 3 difficulty based scenarios: highway (low), rural (medium) and city (high). 3. NeuroTracker as a visuo-cognitive test. A wide range of driving performance metrics from the simulator test were analyzed for correlations with the visual tests, age, and NeuroTracker scores.
There were limited correlations between driving performance and the visual tests. High NeuroTracker scores correlated strongly with high driving performance, and low scores with low driving performance, along with a strong relationship for crash risk. NeuroTracker scores were also a better predictor of driving performance than age. Driving abilities are strongly associated with NeuroTracker scores. These findings highlight the importance of visuo-cognitive abilities in the assessment of driving abilities. This study paves the way toward a single, common indicator of driving behaviour. The study authors recommend that NeuroTracker should be a component in the battery of tests for obtaining or renewing a driving license.
NeuroTracker baselines have superior test–retest reliability over ImPACT across two sports seasons with collegiate athletes.
To determine timeframes required for baseline updates for NeuroTracker and ImPACT, based on long-term retest reliability.
At the start of two consecutive seasons, 30 athletes with no recent history of mTBI completed baseline assessments of NeuroTracker and ImPACT. The test–retest reliability of the results was assessed via three different statistical analyses.
The Visual Motor Speed composite score of the ImPACT was the only component of the assessment with outcomes with acceptable retest reliability. NeuroTracker baselines also met these standards. The researchers concluded that NeuroTracker has an acceptable level of test–retest reliability after one year in comparison to ImPACT.
NeuroTracker measures of spare cognitive capacity reveal for the first time the different mental demands of live versus simulated jet piloting.
The goal of this multi-year research project was to develop methods for assessing the efficacy of training (including live and simulated platforms) by validating measures of cognitive workload that characterize skill acquisition.
10 evaluation pilots (100-300 flight hours of experience) were selected to perform low, medium and high difficulty flight manoeuvres in both a jet flight simulator and live jet flight (Aero Vodochody L-29 jet trainer) using experimental conditions. During flight ECG data (NeXus-4) and eye-tracking data (Dikablis) was collected. Flight performance was analysed for altitude, roll, and vertical speed errors, and cognitive workload was subjectively assessed (10-point Bedford Workload Scale). As a validated tool for evaluating perceptual-cognitive skills, NeuroTracker was selected as to measure spare cognitive capacity via extraneous load (Cognitive Load Theory). All pilots first completed home-based NeuroTracker consolidation training (15 Core sessions). NeuroTracker was integrated into the flight testbed. Low, medium and high difficulty flight manoeuvre tests were performed by all pilots, both without NeuroTracker, and while simultaneously performing NeuroTracker Core sessions.
Compared to performing NeuroTracker alone, live and simulated flight across all manoeuvres, caused a drastic decrease in NeuroTracker speed thresholds (average of ~97%). This, perhaps for the first time, objectively demonstrated that jet flight involves very high intrinsic cognitive loads. Live flight resulted in lower NeuroTracker speed thresholds and physiological performance than simulated flight, with greater differences for higher difficulty maneuverers. This evidence suggests that physiological and cognitive loads are significantly heavier in live flight, supporting the theory that that brain dynamics differ in real-world environments compared to those of a laboratory.
Professional esports players perform better at NeuroTracker than amateurs or traditional athletes, who also perform better than the normal population.
To compare the visual tracking performance of professional as well as amateur eSport players and traditional sportsmen using NeuroTracker.
19 professional players, 22 amateur players and 18 traditional sportsmen completed 3 NeuroTracker sessions. The first session was completed in 2D (non-stereo), and sessions 2 and 3 were completed in 3D (stereo). Experience and playtime data was also collected for analysis.
Professional players spent significantly more time playing esports than amateurs. Pearson correlations revealed positive associations between hours of esport / week and NeuroTracker scores. Mean session score averages across each session consistently found esport professional to have the highest NeuroTracker performance, following by traditional sportsmen. Analysis of prior NeuroTracker research showed that session scores for all three groups were higher than the scores of the normal population.
Several studies have shown that aerobic exercise can slow age-related cognitive decline, and in some cases, improve cognitive function in the older population. The purpose of this study was to investigate for the first time, the effects of resistance training on cognitive function, as measured by changes in NeuroTracker measures.
25 older adults with a mean age of 70yrs were split into a trained group (6 weeks of resistance exercises), and an untrained group. Perceptual-cognitive ability was measured pre and post training using NeuroTracker baselines.
The older adults who performed six weeks of resistance training experienced significant improvements in perceptual-cognitive function as measured by NeuroTracker. Resistance training may therefore be an effective means to slow age related cognitive decline.
NeuroTracker provides greater improvements in archery athlete's concentration than conventional archery training.
To investigate if NeuroTracker training can improve archery concentration performance at moment of shooting.
20 archers in an archery club were divided into two control groups. Over 12 visits the one group completed NeuroTracker training, while the other group completed conventional archery training. Pre-post assessments of concentration were completed by both groups using the Concentration Grid Test.
There was a significant transfer effect from both the NeuroTracker training and the conventional training on the improvement of the archery athlete’s concentration, however NeuroTracker training demonstrated stronger post-training improvements on the Concentration Grid Test across mean, standard deviation and gain scores. The researchers conclude NeuroTracker could be an effective training method to improve the concentration of archery athletes.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!