NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
NeuroTrackerX offers powerful cognitive training tools for both individuals and professionals. But when it comes to delivering consistent, measurable results at scale, our Business Software is in a league of its own.
Who It's for
Dashboard
Multi-User Management
NeuroTracker Training
Custom Sessions
Custom Questionnaires
Training Stats
Academy Certification
Support Resources
Advanced Options
Human 66 Brain Challenge
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
60 minutes of NeuroTracker training transfers to significant improvements in passing accuracy in NCAA Division 1 soccer players.
The purpose of this study was to investigate the relationship between the effects of 4-weeks of NeuroTracker training on in-game soccer performance measures.
13 NCAA Division I soccer players were split into trained and control groups. Both groups completed a NeuroTracker baseline. The trained group then completed 10 NeuroTracker training sessions (60 minutes) over a 4-week period. Soccer performance metrics were obtained from WyScout where 2 game averages were examined to compare pre-post-NT performance.
Data analysis revealed a moderate improvement of the trained group over the control group in passing accuracy, a 8.5% increase post-training, versus a 3.5% increase. Small non-significant improvements were also observed for successful actions and short+medium passes for the NeuroTracker trained group.
NeuroTracker and reaction time measures reveal the effectiveness of different hydration modalities under severe physical fatigue.
To examine the effects of different rehydration strategies on cognitive performance under the effects of physical fatigue.
12 male endurance-trained runners (av. age: 23. years) were tasked with running on a treadmill at 70% of their predetermined VO2max for 1 h followed by running at 90% of VO2max until exhaustion on four separate days. On each day different hydration modalities were given (no hydration, electrolyte drink, electrolyte drink with a low dose of Sustamine, electrolyte drink with a high dose of Sustamine), drinking 250 mL every 15 min. Before and after each hour run, cognitive function (NeuroTracker) and reaction tests were administered.
Results showed that physical reaction time was faster for the low dose trial than the high dose trial. Analysis of lower body quickness indicates that performance in both the low and high dose trials were likely improved in comparison to the no hydration trial. NeuroTracker results indicated a possible greater performance for dehydration and low dose compared to only the electrolyte drink, while there was a likely greater performance in multiple object tracking for the high dose trial compared to consumption of the electrolyte drink only.
3 hours of NeuroTracker training improves verbal and matrix working memory span in Canadian armed forces personnel.
To investigate if working memory in Canadian Armed Forces can be improved with unsupervised remote NeuroTracker training as a practical performance enhancement tool.
66 Canadian Armed Forces soldiers were randomly assigned to NeuroTracker training (30 sessions over two weeks), Dual n-back training, or a passive control group. Verbal and matrix WM span were assessed before and after training, along with the Multi-Attribute Task Battery: MATB-II multi-tasking assessment.
Both active groups improved on the training tasks with 10-50% improvement in post-training working memory measures. No significant transfer was found for the MATB-II multi-tasking assessment.
NeuroTracker training yields superior learning rates when combined with crowd noise stimulation in collegiate football players.
To investigate how attentionally based performance and learning is affected when audio stimuli is present in athletic populations.
Twenty USPORT level football athletes (mean age = 20.5yrs) completed in 18 sessions of NeuroTracker Training. Ten athletes completed the training in a dark room with no external noise (had noise cancelling headphones). The other ten athletes completed the training in the same room but were exposed to a consistent simulated crowd noise.
No significant differences in NeuroTracker initial baselines were found between the two groups were found. However, after the 18 training sessions, the mean NeuroTracker score for the noise group was 2.07 (SD = 0.24). In contrast the no noise group averaged significantly slower at 1.77 (SD = 0.32). Although studies show that noise can inhibit attentional processing, this study indicates that presence of the simulated crowd noise may enhance the ecological validity of NeuroTracker training for athlete populations.
To compare performance and muscle architecture changes in starters and nonstarters during a National Collegiate Athletic Association Division I women's soccer season.
28 females (av. 20 years old) were assessed on NeuroTracker baselines, vertical jump power, repeated line drills and reaction time at preseason, midseason, and postseason. Muscle architecture changes using ultrasonography were assessed at preseason and postseason.
Both starters and non-starters showed similar status or improvements on all assessments across the season, except for line drills performance, which showed greater improvements for starters. NeuroTracker and reaction time performance improved regardless of playtime. Results of muscle architecture analysis indicated that practice training alone provide sufficient stimulus for improving muscle quality during the competitive season. Overall starters did not display significant benefits from competition over athletes who performed training only.
NeuroTracker training with elite youth soccer players leads to improvements in inhibition and visual clarity over controls, but not other measures.
To evaluate the effectiveness and transfer of an NeuroTracker training on visual and executive functions in youth elite soccer players.
29 elite youth soccer players were recruited and divided into training and control groups. Visual and executive functions were analyzed in a pre–post test design with both groups doing regular soccer training, and the trained group also completing 10 weeks of NeuroTracker training twice a week. Transfer assessments included tests with the Senaptec Sensory Station, the Trail Making Test, and the Design Fluency test.
Large differences in NeuroTracker initial baselines were found both between the groups, and within the groups. For the trained group, initial baselines were strongly correlated with improvement rates. Assessments show gains for both groups in working memory, cognitive flexibility, inhibition, metacognition, MOT, attention window and processing speed, but only measures inhibition, visual clarity showed advantages specific to the trained group. The researchers recommended studies with a dual-task training intervention and larger number of participants may be needed to reveal training effects for this population.
Pilot study findings show significant improvements in multiple attentional capacities for elementary students with pre-established attentional challenges.
This was a pilot study with a selection of elementary school children based on test measures showing significant attention problems and impulse control, but not clinically diagnosed as ADHD. The purpose of this pilot study was to see if NeuroTracker has the potential be an efficacious short-term intervention for young students with severe attention impairments, based on changes in standardised neuropsychological assessments.
A test and control group of 5 Elementary school students each were included in the study, selected based on severely impaired rating on the IVA+PlusTM Continuous Performance Test. Both groups produced NeuroTracker initial baselines with statistically insignificant differences. The test group completed 21 five-minute NeuroTracker training sessions distributed over 3.5 weeks, the control group did no training. Both groups were then retested on the neuropsychological assessments.
The Test Group improved NeuroTracker speed thresholds by an average of 61% over the course of the training. The control group showed negligible difference in pre-post neuropsychological assessments scores, whereas the trained group showed variable but significant improvements across a range of visual and auditory measures. Gains were most pronounced in Prudence, Consistency and Focus in both visual and auditory domains, matching previous findings, and suggesting cross-modal performance transfer.In general the improvement ratios suggested that a short-term NeuroTracker training intervention can improve severe attention deficits towards moderate attention deficits in this population, with potential to positively impact learning outcomes at a young age.
NeuroTracker baselines effectively differentiate athletes across gender, type of sport and training frequency.
To investigate if NeuroTracker baselines can be used to differentiate athletic experience and class of sport.
101 female (36) and male (67) athletes at Universidad Playa Ancha (Spain) in soccer, basketball, volleyball, rugby, handball, swimming, athletics, table tennis and rowing, completed NeuroTracker baselines. These were all completed at noon, following intense workouts the day before. The sports were classified into open structure (e.g. soccer) and closed structure (e.g. swimming) groups, due to expected differences their cognitive demands.
Overall, statistical analysis showed that NeuroTracker baselines correlated significantly with sex, amount of athletic training, and class of sport. The researchers conclude that these results show that NeuroTracker provides an accessible measure of perceptual-cognitive function that relates significantly to athletic performance variables in university athletes.
NeuroTracker baselines are significantly related to some test components of standardized concussion assessment tools, but not others.
To determine the extent to which aspects of the Sport Concussion Assessment Tool 3 (SCAT3) or Child SCAT3 (C-SCAT3), and the King-Devick Test (KDT) predict NeuroTracker baselines.
304 healthy, non-concussed participants with a sporting history (101 females, 203 males) ranging in age from 7-29 years were included in the analysis. Participants completed the SCAT3, KDT and NeuroTracker assessments in a single visit.
A regression analysis revealed that KDT, the delayed recall and coordination subcomponent results of the SCAT 3 explained a significant amount of the variance in NeuroTracker baseline scores, but large variability was found with the other test components. The researchers concluded that NeuroTracker baselines likely account for central cognitive functions above and beyond the SCAT3 or C-SCAT3 and KDT.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!