NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
NeuroTrackerX offers powerful cognitive training tools for both individuals and professionals. But when it comes to delivering consistent, measurable results at scale, our Business Software is in a league of its own.
Who It's for
Dashboard
Multi-User Management
NeuroTracker Training
Custom Sessions
Custom Questionnaires
Training Stats
Academy Certification
Support Resources
Advanced Options
Human 66 Brain Challenge
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
NeuroTracker and reaction time measures reveal the effectiveness of different hydration modalities under severe physical fatigue.
To examine the effects of different rehydration strategies on cognitive performance under the effects of physical fatigue.
12 male endurance-trained runners (av. age: 23. years) were tasked with running on a treadmill at 70% of their predetermined VO2max for 1 h followed by running at 90% of VO2max until exhaustion on four separate days. On each day different hydration modalities were given (no hydration, electrolyte drink, electrolyte drink with a low dose of Sustamine, electrolyte drink with a high dose of Sustamine), drinking 250 mL every 15 min. Before and after each hour run, cognitive function (NeuroTracker) and reaction tests were administered.
Results showed that physical reaction time was faster for the low dose trial than the high dose trial. Analysis of lower body quickness indicates that performance in both the low and high dose trials were likely improved in comparison to the no hydration trial. NeuroTracker results indicated a possible greater performance for dehydration and low dose compared to only the electrolyte drink, while there was a likely greater performance in multiple object tracking for the high dose trial compared to consumption of the electrolyte drink only.
A single 6-min NeuroTracker baseline is highly correlated with simulated driving crash risk and lane deviation in healthy older people.
To test the theory that driving performance is strongly associated with dynamic processing of multiple objects, by evaluating if NeuroTracker measures correlate with older driving performance in simulated scenarios.
30 experienced drivers with ages ranging from 65-85 years old were tested on one session of NeuroTracker (3D-MOT), and completed up to 3 driving scenarios on the STISIM 3.0 driving simulator. 5 unexpected events were included in the scenarios to test crash risk. The correlations between NeuroTracker speed thresholds and simulator measures (crash rate, lane deviation) were then calculated.
Highly significant correlations were found between NeuroTracker thresholds and both crash rate and lane deviation in the highway driving scenarios. Lower NeuroTracker scores were strongly associated with lane deviation during highway merging, and higher NeuroTracker scores related to participants being less likely to crash across different scenarios, and to have better overall lane maintenance skills. This study adds plausibility to the idea that a multiple object tracking test such as NeuroTracker could be a candidate for inclusion in an assessment battery for older drivers.
To determine if variance in hydration status would be associated with cognitive performance, as assessed by NeuroTracker.
121 participants performed 15 NeuroTracker sessions across 10 days of visits to the laboratory. On the days of training, recent fluid intake, urine color (Urine color scale, UC), and body water (BIA) were documented.
Individuals with average urine color indicating good hydration performed significantly worse on NeuroTracker than those with a borderline dehydrated indicator, as based on urine color. Participants with no recent beverage consumption performed significantly better than those who had recently consumed water, tea, coffee , and milk. The researchers suggested that optimal hydration may not occur at the highest values of the urine color scale possibly due to moderate hyponatremia and hemodilution that could impact NeuroTracker performance.
NeuroTracker measures performed at different numbers of targets can be useful in characterizing attentional capacities in different populations.
This study sought to investigate the resource limits for dynamic visual attention across age development using NeuroTracker speed thresholds as a measure of attentional capacity.
21 participants were grouped by age: school-aged (6-12 years), adolescent (13-18 years), adult (19-30 years). Each group completed NeuroTracker baselines using speed threshold measurements at progressively increasing numbers of targets.
For all groups, speed thresholds changed in a logarithmic way consistent with the relative increase in multiple object tracking demands. Attentional capacities for NeuroTracker were determined by age, with significantly lower multiple object tracking limits for school-aged individuals. The findings also suggested that the 3D stereo component of NeuroTracker is a critical enabling factor for processing greater attentional loads: school-aged individuals could track numbers of targets beyond the limits of 2D non-stereo (as established in previous studies). These findings suggest that NeuroTracker can be used for characterizing the development of resource allocation in attentional processes through the use of a measure that best approximates real-world conditions.
NeuroTracker 3D-MOT training is more effective at inducing HRV associated flow states in young soccer players, than 2D-MOT.
To compare the learning efficiency 3D-MOT (NeuroTracker) with 2D-MOT, and investigate whether any advantages can be reflected by heart rate variability (HRV).
26 female U15 soccer players completed the 2D- and 3D-MOT tasks with the order reversed for half of the participants. HRV measures were recorded live during the training.
The female soccer players displayed higher learning efficiency in the 3D-MOT task than in the 2D-MOT. HRV analysis revealed that the training had some stimulation associated with inducing flow states in 2D, but that this effect was significantly greater with 3D-MOT. The researchers concluded that this study highlights the role of flow experience in the utility and applicability of 3D-MOT in soccer sport.
For the first time NeuroTracker learning rates reveal the remarkably adaptability of world-class athletes' brains.
To assess the learning capacities of elite athlete populations compared to amateur athletes and nonathlete university students on a neutral cognitive training assessment (NeuroTracker).
308 participants were assessed by completing 15 distributed NeuroTracker sessions, grouped as the following: 102 professional elite athletes (NHL, EPL and Top 14 Rugby), 173 NCAA elite non-professional athletes, and 33 non-athlete university students.
The results showed a clear distinction between level of athletic performance and corresponding fundamental mental capacities for learning a demanding abstract and dynamic scene task. Elite athletes showed significantly higher initial baselines than the other groups, along with substantially superior learning rates. The elite non-professional athletes also similarly significantly higher learning rates over the non-athletes group. For the first time this evidence suggest that a defining characteristic of elite professional athletes is their perceptual-cognitive learning prowess, associated with unusually high levels of neuroplasticity, and that NeuroTracker is a sensitive tool for objectively assessing these abilities.
High intensity exercise can be effectively combined with NeuroTracker as dual-task training for younger and older adults.
To examine the effects of a high intensity intermittent exercise (HIIE) protocol on performance with a perceptual-cognitive task (NeuroTracker), and whether effects differ between children, young adults, and older adults.
12 children, 12 young adults and 12 older adults completed a HIIE program consisting of eleven 30-second intervals at 90% VO2 max, interspersed with 2-minute active recovery periods at 50% VO2max. Before and during this exercise protocol, three sessions of NeuroTracker task were performed at 5, 15, and 25 minute intervals.
Young adults had significantly higher absolute NeuroTracker scores than children and older adults. Apart children, NeuroTracker scores improved each session, despite the exercise demands (greatest for young adults). The findings suggest that intensive exercise protocols are suitable to be combined with NeuroTracker cognitive training with younger and older adults, but not with children.
Scientific analysis of NeuroTracker driving research deems it to be relevant measure of driving safety in the context of renewing a license.
To combine several tests known to assess driving fitness and propose a methodology to bring these together under a single index termed the ‘Driver’s Safety Index’.
115 licensed drivers between the ages of 18 and 86 were separated into two groups: 64 young participants (average age of 29 years), and 51 older participants (average age of 77 years). Each participant was assessed on three different experimental phases. 1. Visual tests: visual acuity test (V1), stereoscopic vision test (V2), and a binocular visual field test (V3). 2. Simulator driving tests across 3 difficulty based scenarios: highway (low), rural (medium) and city (high). 3. NeuroTracker as a visuo-cognitive test. A wide range of driving performance metrics from the simulator test were analyzed for correlations with the visual tests, age, and NeuroTracker scores.
There were limited correlations between driving performance and the visual tests. High NeuroTracker scores correlated strongly with high driving performance, and low scores with low driving performance, along with a strong relationship for crash risk. NeuroTracker scores were also a better predictor of driving performance than age. Driving abilities are strongly associated with NeuroTracker scores. These findings highlight the importance of visuo-cognitive abilities in the assessment of driving abilities. This study paves the way toward a single, common indicator of driving behaviour. The study authors recommend that NeuroTracker should be a component in the battery of tests for obtaining or renewing a driving license.
NeuroTracker baselines as a measure of spatial awareness correlate significantly with moderate intensity running during competitive rugby play.
This exploratory study sought to evaluate the relationship between spatial awareness, agility, and distance covered as measured by GPS.
12 American collegiate athletes were assessed on spatial awareness (NeuroTracker: 1 Core session),agility (Pro-agility and T Drill), and then measured for running distance in a competitive Rubgy match at low, moderate and high intensity running speeds.
Agility measures did not correlate with any of the running speeds, and the spatial awareness measure did not correlate with low or high intensity running. However spatial awareness did correlate significantly with moderate intensity running (cruising/striding). Spatial awareness, as measured by NeuroTracker, appears to be related to the moderate intensity movement patterns of rugby union athletes. The researchers hypothesize that the ability to track teammates and opponents while at striding speed may be result of the processing of external and internal stimuli, while generally attempting to navigate open space on the pitch.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!