NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.

NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.

Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.

Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.

Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.

Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.

Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.

Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.

Our cloud-based platform is built for security and scalability across any size team or organization.

Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
NeuroTrackerX offers powerful cognitive training tools for both individuals and professionals. But when it comes to delivering consistent, measurable results at scale, our Business Software is in a league of its own.
Who It's for
Dashboard
Multi-User Management
NeuroTracker Training
Custom Sessions
Custom Questionnaires
Training Stats
Academy Certification
Support Resources
Advanced Options
Human 66 Brain Challenge
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
3-hours of NeuroTracker training dramatically improves older adults' abilities to predictively interpret human body language cues at close distances.
To investigate the extent to which older people's abilities predict biological motion cues to declines with natural aging, and to see if any such effects can be reversed through a NeuroTracker training intervention.
41 older adults with mean age of 68yrs old were divided into trained, active control (placebo), and passive control (no training) groups. They were measured on a standardized BMP post training, which consisted of 15 NeuroTracker sessions distributed over 5 weeks.
Only the NeuroTracker trained group showed transfer to BMP, who demonstrated substantial improvements in processing BMP at 4m. The conclusion was a clear and positive transfer of perceptual-cognitive training onto a socially relevant ability in the elderly.

NeuroTracker baselines reveal a distinct perceptual-cognitive advantage for college-age athletes over non-athletes.
To evaluate perceptual cognitive abilities among male and female adolescents and determine if undiscovered gender differences in athletes’ perceptual cognitive abilities exist.
40 nonathletes (20 boys and 20 girls) and 40 athletes (21 boys and 19 girls) aged 17-24 years old completed a short questionnaire about their sports practice. All participants then completed three NeuroTracker sessions.
The findings confirm the superior perceptual cognitive abilities in young athletes relative to nonathletes. However, results also indicate differences in performance patterns between male and female athletes, with male athletes achieving the highest tracking speeds but female athletes showing faster adaptation to the task by the 3rd session. These results demonstrate that sports engagement and perceptual cognitive abilities are strongly related during adolescence and that this relationship seems more prevalent in athletes for this age group.

https://peerj.com/articles/10211/
To examine whether individuals who play video games at a professional level in the esports industry differ from amateur video game players in their cognitive and learning abilities.
14 elite professional gamers and 16 casual video game players were assessed on a battery of standard neuropsychological tests evaluating processing speed, attention, memory, executive functions, and manual dexterity. In addition, both groups completed 15 distributed NeuroTracker sessions to assess dynamic visual attention and learning abilities.
Professional players showed the largest performance advantage relative to amateur players for visual spatial memory (Spatial Span), and with more modest benefits for selective and sustained attention (d2 Test of Attention), and auditory working memory (Digit Span). Professional players also had greatly higher initial speed thresholds on NeuroTracker, with the advantage increasing marginally over the 15 sessions. Overall, the cognitive assessments differentiated the professional and amateur groups, however there was negligible correlation with these results in terms of gaming experience in either group. In conclusion, standardized cognitive assessments revealed some elevated abilities of pro gamers, however NeuroTracker baselines and learning rates provided much more sensitive comparative measures.

To examine the effects of 14-days ATP supplementation (adenosine 5′-triphosphate) on NeuroTracker visual tracking speed, reaction time, mood and cognition in a double-blind crossover study.
22 adults were randomized to either an active PeakATP® group or a placebo control group and supplemented for 14-days. They then tested on 3 minutes of maximum intensity cycling. Pre, immediately post, and 60-minutes post, all participants completed a NeuroTracker baseline, a visuomotor reaction test (Dynavision D2), a Profile of Mood States Questionnaire and a cognition assessment (ANAM). After another 14 days of no supplementation, the active and control groups were then reversed and the whole procedure was repeated.
NeuroTracker results improved on the second testing procedure, however average differences between active and control groups were negligible. No significant interactions were found on the other assessments, apart from reaction time performance, which improved meaningfully with post ATP supplementation. The results suggest ATP may help decrease fatigue related effects from intense bouts of exercise, but not higher-level cognitive functions.

Pilot study findings show significant improvements in multiple attentional capacities for elementary students with pre-established attentional challenges.
This was a pilot study with a selection of elementary school children based on test measures showing significant attention problems and impulse control, but not clinically diagnosed as ADHD. The purpose of this pilot study was to see if NeuroTracker has the potential be an efficacious short-term intervention for young students with severe attention impairments, based on changes in standardised neuropsychological assessments.
A test and control group of 5 Elementary school students each were included in the study, selected based on severely impaired rating on the IVA+PlusTM Continuous Performance Test. Both groups produced NeuroTracker initial baselines with statistically insignificant differences. The test group completed 21 five-minute NeuroTracker training sessions distributed over 3.5 weeks, the control group did no training. Both groups were then retested on the neuropsychological assessments.
The Test Group improved NeuroTracker speed thresholds by an average of 61% over the course of the training. The control group showed negligible difference in pre-post neuropsychological assessments scores, whereas the trained group showed variable but significant improvements across a range of visual and auditory measures. Gains were most pronounced in Prudence, Consistency and Focus in both visual and auditory domains, matching previous findings, and suggesting cross-modal performance transfer.In general the improvement ratios suggested that a short-term NeuroTracker training intervention can improve severe attention deficits towards moderate attention deficits in this population, with potential to positively impact learning outcomes at a young age.


Rigorous feasibility study finding NeuroTracker to have high accessibility and adherence for at-home independent cognitive training.
To investigate the feasibility of using a remote therapeutic cognitive intervention for brain injury survivors using an at-home training program.
20 older female and male adults were assessed for cognitive health status using a self-report questionnaire and the Mini-Mental State Examination (MMSE) and deemed cognitively healthy. The at-home participants were provided with NeuroTracker training and completed 20 training sessions over 5 weeks. Participant recruitment, retention, adherence, and experience were used as markers of feasibility. Individual session scores, overall improvement, and learning rates between groups was also assessed.
The remote intervention was found to have strong feasibility overall. This was supported by high recruitment and retention, 90% participant adherence, along with ease of use of the program. Differences in screen size and 3D technology showed no differences on cognitive benefits achieved from training, with significant improvements in task performance across the program, which was also equivalent to lab-based training. The researchers concluded that NeuroTracker provides a promising at-home option for cognitive training for cognitively healthy adults and brain injury survivors.

NeuroTracker baselines have superior test–retest reliability over ImPACT across two sports seasons with collegiate athletes.
To determine timeframes required for baseline updates for NeuroTracker and ImPACT, based on long-term retest reliability.
At the start of two consecutive seasons, 30 athletes with no recent history of mTBI completed baseline assessments of NeuroTracker and ImPACT. The test–retest reliability of the results was assessed via three different statistical analyses.
The Visual Motor Speed composite score of the ImPACT was the only component of the assessment with outcomes with acceptable retest reliability. NeuroTracker baselines also met these standards. The researchers concluded that NeuroTracker has an acceptable level of test–retest reliability after one year in comparison to ImPACT.
60 minutes of NeuroTracker training transfers to significant improvements in passing accuracy in NCAA Division 1 soccer players.
The purpose of this study was to investigate the relationship between the effects of 4-weeks of NeuroTracker training on in-game soccer performance measures.
13 NCAA Division I soccer players were split into trained and control groups. Both groups completed a NeuroTracker baseline. The trained group then completed 10 NeuroTracker training sessions (60 minutes) over a 4-week period. Soccer performance metrics were obtained from WyScout where 2 game averages were examined to compare pre-post-NT performance.
Data analysis revealed a moderate improvement of the trained group over the control group in passing accuracy, a 8.5% increase post-training, versus a 3.5% increase. Small non-significant improvements were also observed for successful actions and short+medium passes for the NeuroTracker trained group.
A 20-30 minute NeuroTracker training intervention significantly improves multiple object tracking skills and working memory abilities.
To assess transfer from a NeuroTracker training intervention to near, mid-level, far transfer tasks.
84 graduate participants (av. 21 years old) were randomized to 3 trained groups and 1 passive control group. The trained groups completed either 5 or 3 standard sessions of NeuroTracker, or 5 sessions of a portable version of NeuroTracker (Microsoft Surface Pro tablet). The passive group completed only pre-post NeuroTracker baselines. All groups then completed pre-post assessments on a simplified 2D multiple object tracking task, an N-back working memory assessment, and on a video-based military driving task.
All trained groups showed significant improvements in NeuroTracker scores from 20-30 minutes of training. The passive control group also showed some modest improvements from only completing baselines. NeuroTracker training transferred to significant pre-post improvements in the 2D multiple object tracking test, but with smaller effects that improvements in NeuroTracker scores. Performance was found to be significantly better post-training for the trained groups on the working memory test, but not for the control group. No transfer effects were found for the video-based military task.

Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.

We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!