NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
NeuroTrackerX offers powerful cognitive training tools for both individuals and professionals. But when it comes to delivering consistent, measurable results at scale, our Business Software is in a league of its own.
Who It's for
Dashboard
Multi-User Management
NeuroTracker Training
Custom Sessions
Custom Questionnaires
Training Stats
Academy Certification
Support Resources
Advanced Options
Human 66 Brain Challenge
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
60 minutes of NeuroTracker training transfers to significant improvements in passing accuracy in NCAA Division 1 soccer players.
The purpose of this study was to investigate the relationship between the effects of 4-weeks of NeuroTracker training on in-game soccer performance measures.
13 NCAA Division I soccer players were split into trained and control groups. Both groups completed a NeuroTracker baseline. The trained group then completed 10 NeuroTracker training sessions (60 minutes) over a 4-week period. Soccer performance metrics were obtained from WyScout where 2 game averages were examined to compare pre-post-NT performance.
Data analysis revealed a moderate improvement of the trained group over the control group in passing accuracy, a 8.5% increase post-training, versus a 3.5% increase. Small non-significant improvements were also observed for successful actions and short+medium passes for the NeuroTracker trained group.
NeuroTracker training across a professional baseball season transfers to large improvements in hitting performance for curveballs and sliders.
To assess the performance transfer effects from NeuroTracker training to professional baseball hitting over a competition season.
12 Japanese pro baseball players from the Seibu Lions performed NeuroTracker training at their own preferred timing and frequency over 5 months, completing up to 80 sessions each. Throughout this duration and 4 months prior, competition hitting metrics were recorded: zone contact, zone-swing strike, outside swing, outside-swing strike.
On average the baseball players’ NeuroTracker speed threshold scores improved by around 30%, with no ceiling effects from continued training. Metrics on fastball hitting showed no significant changes. However, metrics on non-fastball hitting (e.g. curve balls and sliders) revealed strong positive effects. Successful hit rate increased by +12%, while zone swing and outside swing strikes were reduced substantially by -25.3% and -26.5% respectively. Outside swings were also positively reduced by -9.6%.
Older adults show significant cognitive gains across a battery of neuropsychological assessments with a short NeuroTracker training intervention.
To investigate if a short NeuroTracker training intervention could improve high-level cognitive abilities in elderly populations.
46 participants, aged 63-87 years old completed pre-and-post neuropsychological assessments for selective attention, psychomotor speed, and cognitive flexibility. Active participants completed 21 NeuroTracker sessions (approx. 2 hours of training) over 7 weeks, between pre-and-posts tests. Controls did no training.
Controls showed no change in pre and post tests. In contrast the active NeuroTracker group experienced significant gains in cognitive flexibility, psychomotor speed, and selective attention, and similar improvements in a combined assessment of psychomotor speed and cognitive flexibility.The researchers concluded that NeuroTracker presents a promising tool for recovering and improving these high-level cognitive abilities in older populations.
NeuroTracker baselines have superior test–retest reliability over ImPACT across two sports seasons with collegiate athletes.
To determine timeframes required for baseline updates for NeuroTracker and ImPACT, based on long-term retest reliability.
At the start of two consecutive seasons, 30 athletes with no recent history of mTBI completed baseline assessments of NeuroTracker and ImPACT. The test–retest reliability of the results was assessed via three different statistical analyses.
The Visual Motor Speed composite score of the ImPACT was the only component of the assessment with outcomes with acceptable retest reliability. NeuroTracker baselines also met these standards. The researchers concluded that NeuroTracker has an acceptable level of test–retest reliability after one year in comparison to ImPACT.
Pilot study findings show significant improvements in multiple attentional capacities for elementary students with pre-established attentional challenges.
This was a pilot study with a selection of elementary school children based on test measures showing significant attention problems and impulse control, but not clinically diagnosed as ADHD. The purpose of this pilot study was to see if NeuroTracker has the potential be an efficacious short-term intervention for young students with severe attention impairments, based on changes in standardised neuropsychological assessments.
A test and control group of 5 Elementary school students each were included in the study, selected based on severely impaired rating on the IVA+PlusTM Continuous Performance Test. Both groups produced NeuroTracker initial baselines with statistically insignificant differences. The test group completed 21 five-minute NeuroTracker training sessions distributed over 3.5 weeks, the control group did no training. Both groups were then retested on the neuropsychological assessments.
The Test Group improved NeuroTracker speed thresholds by an average of 61% over the course of the training. The control group showed negligible difference in pre-post neuropsychological assessments scores, whereas the trained group showed variable but significant improvements across a range of visual and auditory measures. Gains were most pronounced in Prudence, Consistency and Focus in both visual and auditory domains, matching previous findings, and suggesting cross-modal performance transfer.In general the improvement ratios suggested that a short-term NeuroTracker training intervention can improve severe attention deficits towards moderate attention deficits in this population, with potential to positively impact learning outcomes at a young age.
Isolated NeuroTracker training with elite professional athletes provides superior baselines and initial learning rates versus dual-task training.
This paper covers foundational concepts of NeuroTracker’s relevance to training of cognitive capacities deemed critical in sports performance, particularly in dynamic team-sports. It also contains a study investigating the effects of attentional loads in learning paradigms, with the aim of understanding optimal load conditions for training perceptual-cognitive ability.
4 elite professional sports teams trained their athletes on NeuroTracker (15-30 sessions) during their competition seasons. An English Premier Team club, a National Hockey League team, and a European Rugby team were all trained in the standard sitting down position to isolate any influence from attentional mechanisms involved in posture control. Another NHL team performed the training in standing position, involving basic balance demands on attention.
Taking the statistical average for learning progression on NeuroTracker, the three professional sports teams training in sitting position showed near identical progression, with rapid early learning slowing down towards longer term but continued learning. The standing sports team showed much lower NeuroTracker scores, but more importantly slower overall learning progression, with a large magnitude of difference to the other teams. The findings clearly demonstrate the link between balance control mechanisms and perceptual-cognitive demands solicited by NeuroTracker training. This demonstrates that cognitive training loads need to be sensitively optimized to attentional thresholds in order to generate effective short and longer term learning adaptations.
NeuroTracker learning rates and neuropsychological assessments reveal that professional action video gamers possess superior attentional capacities.
To assess the extent to which action video game players perform better than non-gamers on cognitive functions measured by NeuroTracker and neuropsychological assessments.
14 professional and 16 amateur action video game players completed a battery of 7 standardized neuropsychological assessments, a manual dexterity test, and 14 NeuroTracker sessions. Statistical analysis techniques were used to compare cognitive differences.
Analysis revealed that high performance in professional action video games players is associated with enhanced abilities in visual spatial attention, visual and auditory short-term memory, and selective and sustained attention. No significant differences between professionals and amateurs were evident on tasks evaluating executive functions, perceptual manipulation, or manual dexterity. Although both groups displayed a similar learning capacity to improve at NeuroTracker over 90-mins of training, professionals exhibited a distinct performance advantage throughout the intervention. The results overall suggest that elite action video gamers have superior attentional control.
Statistical analysis of NeuroTracker learning reveals cognitive characteristics between attention-deficit/hyperactivity disorder, specific learning disorder, and Intellectual developmental disorder
To investigate if NeuroTracker learning rates can characterize different neurodevelopmental conditions in children.
The researchers focused on three different neurodevelopmental conditions: Attention-deficit/hyperactivity disorder (ADHD), Specific learning disorder (SLD), and Intellectual developmental disorder (IDD). 101 participants aged 6 to 17 years old completed a total of 30 NeuroTracker sessions over a period of 5 weeks, along with standardized neuropsychological assessments to confirm each neurodevelopmental diagnosis.
Progression in NeuroTracker scores throughout the training program were scientifically analyzed using a latent growth curve modeling technique. This analysis revealed 1) a decreased baseline performance for children with IDD along with slower initial learning rates, 2) children with ADHD and SLD demonstrate a reduced rate of longer-term learning, 3) a significant overlap exists between individuals diagnosed with ADHD and SLD.
3-hours of NeuroTracker training dramatically improves older adults' abilities to predictively interpret human body language cues at close distances.
To investigate the extent to which older people's abilities predict biological motion cues to declines with natural aging, and to see if any such effects can be reversed through a NeuroTracker training intervention.
41 older adults with mean age of 68yrs old were divided into trained, active control (placebo), and passive control (no training) groups. They were measured on a standardized BMP post training, which consisted of 15 NeuroTracker sessions distributed over 5 weeks.
Only the NeuroTracker trained group showed transfer to BMP, who demonstrated substantial improvements in processing BMP at 4m. The conclusion was a clear and positive transfer of perceptual-cognitive training onto a socially relevant ability in the elderly.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!